Are You New Here? Tracing the Origin of Viruses
Assistant Professor Antoni Luque Studying Origins of Viruses
By Sarah White
Nearly two years into a global pandemic, it is apparent that viruses like COVID-19
mutate and evolve into new variants quickly. But what conditions allow for new viruses
to emerge in the first place?
An interdisciplinary team of biologists and mathematicians at San Diego State University,
led by Forest Rohwer, Anca Segall, Rob Edwards, and Antoni Luque, recently received $1.5 million from the Gordon and Betty Moore Foundation to answer this question.
Take what we know about the evolution of living things like Darwin’s Galapagos finches
(which are really tanagers): if an organism has an adaptation that is advantageous
for survival after a change in its environment, it is more likely to pass on its genetic
information.
Viruses are considered parasites because they require a host cell’s machinery to reproduce.
A virus can evolve if its genetic material allows it to be a more effective virus
(i.e., replicate more) and if its genetic material leads to more successful survival
of its host cell.
Scientists who study viruses are still trying to determine whether new viruses are
always adapting from already existing viruses or if they arise spontaneously.
“It could be both or it could be a continuum,” said Segall, founder of the Viral Information
Institute, and one of the project leaders. “People have not looked deeply enough or
perhaps not in the right places.”
The point of this new project, Segall said, is to find out whether there is a mechanism
of generating a new virus that scientists don’t already know about.
“Maybe some basic elements of viruses could come together in recurring ways to generate
new viruses,” said Luque, a professor of mathematics and statistics and the project
modeling leader. “This would be a complementary theory that’s never been explored
before.”
Luque is using his expertise in the physics of viruses to determine the size of the
smallest viral particle that could possibly exist. It has to be large enough to contain
the virus’s genetic information yet small enough to enter bacterial cells to be replicated.
If it is too small, the outer shell of a virus particle, called a capsid, risks disintegrating.
Using computational models, Luque and his colleagues in the Viral Information Institute can manipulate various parameters to determine which environmental conditions might
be just right for the building blocks of this smallest possible virus to come together
spontaneously.
Two-pronged approach
Rohwer, Segall, and Edwards will use classic techniques from genetics and bioinformatics
to better understand the real niches around the world that are most likely to lead
to new viruses. Edwards, formerly at SDSU, is now at Flinders University in Adelaide,
Australia. Undergraduate, graduate and postdoctoral students also are assisting in
the work.
“The experiments themselves are relatively simple; it is the idea that is novel and
the techniques we’re putting together, looking for novel structures and looking for
novel genomes that allow survival of a cell in unusual, stressful conditions,” explained
Segall.
The team wants to study the instances where they would be able to see viruses changing,
such as when the SARS-CoV-2 virus switched to a new environmental niche, likely by
jumping from an animal host to humans. This might involve combining bacteria from
coral reefs with viral communities that thrive in the arctic.
But they will do this in safe, observable ways using DNA-based viruses that infect
non-pathogenic bacteria in laboratories. They will manipulate these DNA sequences
to have unusual structures to see whether bacterial cells will still incorporate them
into their genomes.
Such experiments will help scientists better understand the functions of viral genes.
There are one million viruses in a single drop of seawater and 10 billion virus particles
in a gram of stool. Yet, scientists have only characterized the structure and genome
of about 100 to 200 viruses in high experimental detail.
SDSU’s rich community of bioinformatics and computational experts and their collaborators
will help sequence genes of interest to identify what the necessary components of
the shortest functional viral genome might be.
“If there is a risk of mixing viruses, we should be worried that it’s already happening,”
said Luque. “We’re not playing Frankenstein.”
“When rain evaporates, viruses get deployed miles away every day,” he added. “While
we’re having an IPA after work, plant viruses are going into our body from our last
salad.”
In addition to answering fundamental questions about virus origins, an enhanced understanding
could lead to more proactive approaches to designing viral particles with desirable
properties to deliver drugs or build nanoreactors and batteries.